
OSmosis: Modeling & Building
Flexible OS Isolation Mechanisms

Sidhartha Agrawal* Shaurya Patel* Reto Achermann Margo I. Seltzer
University of British Columbia *Student

Operating systems provide an abstraction layer between the
hardware and higher-level software. Many abstractions, such
as threads, processes, containers, and virtual machines, are
mechanisms to provide isolation. New application scenarios
frequently introduce new isolation mechanisms. Implement-
ing each isolation mechanism as an independent abstraction
makes it difficult to reason about the state and resources
shared among different tasks, leading to security vulnerabil-
ities and performance interference.
We present OSmosis, an isolation model that expresses

the precise level of resource sharing, a framework in which
to implement isolation mechanisms based on the model, and
an implementation of the framework on seL4. The OSmo-
sis model lets the user determine the degree of isolation
guarantee that they need from the system. This determina-
tion empowers developers to make informed decisions about
isolation and performance trade-offs, and the framework
enables them to create mechanisms with the desired degree
of isolation.

1 Motivation
New isolation mechanisms are constantly emerging and are
often motivated by one of: the emergence of a new use case,
improving the performance of an existing use case, or de-
fending against a security vulnerability. However, these new
mechanisms always use isolation as a tool. For example, they
reserve resources (memory, storage, CPU time) [7], restrict
access to unneeded state (kernel) [11], or share underly-
ing state (drivers) [2, 3] to improve performance. Similarly,
they increase the isolation of resources or underlying state
to build defenses. Given the importance of varying isola-
tion, it is imperative to have a clear understanding of which
resources and state are shared when using any particular
isolation mechanism. However, we lack a precise vocabulary
to describe this sharing and isolation, which leads to security
vulnerabilities.

Even when applications appear isolated, such as in the
case of containers, they still share kernel state. For instance,
Linux namespaces [9], which are a building block for con-
tainers, do not isolate all the kernel’s visible state; some state
can leak across container boundaries (e.g., the open file table)
leading to denial-of-service attacks on other applications on
the same host [12]. Additionally, since the container infras-
tructure and the kernel run in the same address space, a
simple buffer overflow in one part of the kernel can bring
down the shared kernel and both containers. Lightweight

VMs such as FireCracker [2] and KataContainers [10] are
more secure alternatives to Linux containers, providing the
security of VMs with the overhead of containers. However,
they achieve this performance by having the host OS (rather
than the guest OS) provide functionality (e.g., drivers) for all
VMs. Unfortunately, this leads to more shared state in the
host kernel. Just as a shared kernel exposed issues with state
leakage (for containers), shared drivers in the host kernel
can do the same (for VMs).

2 Overview of OSmosis
We present OSmosis, which consists of three parts. First, a
mathematical model that enables us to precisely describe
the resources in the system and how they are shared. Sec-
ond, a framework that identifies the features needed by an
operating system to build isolation mechanisms based on
the model. Third, an implementation of the framework on
seL4 [6].
Model: In OSmosis, the running system consists of a set
of protection domains and resources. Protection domains cor-
respond to active entities such as processes, threads, and
virtual machines. A protection domain has a set of resources
and a resource directory. Resources can be either physical
or virtual entities (e.g., virtual memory region, file, socket)
that can be partitioned into smaller resources. The resource
directory is a dictionary that identifies the protection do-
main responsible for satisfying a request for a resource that
the current protection domain does not possess. For exam-
ple, a user-level process wanting to allocate some memory
will call mmap() to request more virtual memory resources.
This corresponds to a lookup in the PD’s resource direc-
tory for virtual memory resources and then requesting more
virtual memory from the PD to which that resource maps.
The resource relation describes dependencies between two
resources (e.g., the page table keeps track of which virtual
memory page depends on which physical page).

We show the flexibility of our model by describing five sce-
narios in Fig. 1. We focus only on memory resources, but the
concepts apply to all types of resources. The arrows indicate
resource relations, the rounded rectangles are resources, and
the blue boxes are protection domains. No resource directo-
ries are shown in the figure. Resources A and B represent the
stack resource. Two threads both have each other’s stacks in
their protection domain (Fig. 1 (a)). In ’threads with isolated
stacks’ (Fig. 1 (b)), each thread has access only to its own

T2
P1

vP1

P2P1T1

VAS

HEAP

0

A,B

VAS

HEAP

1 VAS

HEAP2

VAS

VM1

VAS

HEAP4,2

HEAP

VAS

VAS

TS2TS1

A B A B

A

B

Other PDs
Resource

P1U1

VAS

HEAP4,2

VAS

A

B

A, B are stacks of the PD

(a) Threads

PD0 of host OS

(b) Threads w/
isolated stack (TS)

(c) 2 Processes (d) Unikernel and
process

(e) VM and a
process

A,B

Indicates where the sharing starts,
And indicates the number of hops N

HEAP

VAS

Figure 1. Five mechanisms modeled with OSmosis

stack. However, they are still allocated from the same ad-
dress space. Two processes (Fig. 1 (c)) have separate address
spaces, but their virtual address space (VAS) data structures
in 𝑃𝐷0 depend on the kernel heap. In the case of a unikernel
(Fig. 1 (d)), although there are additional levels of abstraction,
address space management and the application are in the
same PD. In the case of a guestOS (i.e., virtual machine), a
process running on the VM is in a separate PD (Fig. 1 (e)).
Viewing the system as nodes (resources and PDs) and

edges (resource relations) in a graph makes it easy to identify
shared resources, whether direct or indirect. In Fig. 1, the
first shared resource between the two user PDs (light blue)
is shown in a patterned box, and the number of the hops at
which the sharing happens is shown in the circle. In both
Fig. 1 (d) and (e), the stack of the user PD running in the
unikernel and VM, respectively, is four hops from the heap
of the host OS. Whereas the stack of the process running
directly on the host is only two hops away.
This difference in the number of hops shows that one is

more isolated than the other; and more isolated says that is
more difficult to leak state between them.
Framework: The OSmosis framework consists of three
building blocks that an OS needs to realize the model. First,
we need a protection domain abstraction, which is the ex-
plicit owner of a set of resources. Second, we need a way
to extract the resource relation from the system to create
the system’s dependency graph. This information is often al-
ready present; for example, page-tables describe how virtual
addresses depend on physical addresses. And finally, we need
an API that instantiates a PD given the isolation properties
of each resource described in the model. This is inspired by
the clone system call in Linux [8] and is primarily syntactic
sugar for the developer to create PDs with desired isolation
properties easily.
Implementation: We have implemented a small portion
of OSmosis– dealing with memory resources – using the
capabilities-based microkernel seL4 [4, 6]. We chose this mi-
crokernel as it has no existing abstractions for processes,
containers, or virtual machines. This lack of existing abstrac-
tions allows us to define the building blocks as we see fit.
Capabilities and capability spaces [1] map well to OSmosis’s
resources and protection domains. In seL4, the capability

space is modeled as a tree, and, by sharing parts of the sub-
tree with other protection domain, we implement the sharing
of resources amongst PDs.

3 Discussion and Use cases
OSmosis allows us to explore the space of isolation mecha-
nisms in a principled way. We discuss how themodel enables
us to reason about isolation and the framework lets us build
new abstractions quickly.
Comparing Isolation level between PDs: Viewing the
systems as a collection of resources and relations enables
us to define queries on the model state that can be used to
precisely compare the level of isolation between two PDs.
For instance, if we take the transitive closure of the resource
relations starting at a PD, we get a set of all the resources
on which a PD depends. Alternatively, we can restrict the
number of relations to traverse (i.e., hops) to a small number
and see how many resources two PDs share for a given value
of hops, e.g., what is the set of resources that are shared
in the 3-hop radii of two PDs. If a pair of PDs share fewer
resources at a given number of hops than another pair of
PDs, we can say that the former pair is more isolated than
the latter.
Existing and New Mechanisms: In Sec. 2, we showed
with some examples that OSmosis is rich enough to capture
existing mechanisms. For example, unikernels are similar
to virtual machines in many respects, but the distinction
between them is clearer in OSmosis. The application and
kernel belong to the same PD, whose resources and resource
directory is a subset of the union of a conventional virtual
machine and process implementation. Similarly, building
slight variations of existing mechanisms is trivial. For in-
stance, to build processes that operate on a separate set of
physical pages, OSmosis assigns different resource directory
entries (with a disjoint set of pages) to the PDs of those
two processes. Lightweight contexts (LwC) [5] are equally
straight forward; each LwC is a separate PD, but the various
PDs share only the necessary resources, e.g., virtual memory,
files.
Viewing Isolation as spectrum: With OSmosis, by in-
creasing the number of hops at which sharing happens for a
specific type of resource, we can increase the isolation just
for that resource type. Thus, we show that there exists a
vast high-dimensional space of isolation primitives created
by assigning different isolation levels to different resources.
When deploying a new PD in a shared cloud environment,
the operator can vary isolation levels for different resources
against other trusted and untrusted PDs. For example, if a
new threat is discovered in the networking stack, OSmosis
enables the deployment engineer to run just the networking
stack with an additional isolation level until the vulnerability
is patched.

2

References
[1] 2021. seL4 Manual. (2021). https://sel4.systems/Info/Docs/

seL4-manual-latest.pdf
[2] Alexandru Agache, Marc Brooker, Alexandra Iordache, Anthony

Liguori, Rolf Neugebauer, Phil Piwonka, and Diana-Maria Popa. 2020.
Firecracker: Lightweight virtualization for serverless applications.
In 17th USENIX symposium on networked systems design and im-
plementation (NSDI 20). https://www.usenix.org/conference/nsdi20/
presentation/agache

[3] Simon Kuenzer, Vlad-Andrei B𝑢adoiu, Hugo Lefeuvre, Sharan San-
thanam, Alexander Jung, Gaulthier Gain, Cyril Soldani, Costin Lupu,
Ştefan Teodorescu, Costi R𝑢aducanu, Cristian Banu, Laurent Mathy,
R𝑢azvan Deaconescu, Costin Raiciu, and Felipe Huici. 2021. Unikraft:
Fast, Specialized Unikernels the Easy Way. In Proceedings of the Six-
teenth European Conference on Computer Systems (EuroSys ’21). Asso-
ciation for Computing Machinery. https://doi.org/10.1145/3447786.
3456248

[4] Ben Leslie and Gernot Heiser. 2020. The sel4 core platform.
TS/sel4cp/2011-draft-spec. pdf (2020).

[5] James Litton, Anjo Vahldiek-Oberwagner, Eslam Elnikety, Deepak
Garg, Bobby Bhattacharjee, and Peter Druschel. 2016. Light-Weight
Contexts: An OS Abstraction for Safety and Performance. In 12th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI 16). https://dl.acm.org/doi/10.5555/3026877.3026882

[6] Online. 2022. The seL4 Microkernel. (2022). https://sel4.systems/
[7] Online. 2023. Linux: Cgroups. (2023). https://man7.org/linux/

man-pages/man7/cgroups.7.html
[8] Online. 2023. Linux: Clone. (2023). https://man7.org/linux/man-pages/

man2/clone.2.html
[9] Online. 2023. Linux: Namespaces. (2023). https://man7.org/linux/

man-pages/man7/namespaces.7.html
[10] Alessandro Randazzo and Ilenia Tinnirello. 2019. Kata Containers:

An Emerging Architecture for Enabling MEC Services in Fast and
SecureWay. In 2019 Sixth International Conference on Internet of Things:
Systems, Management and Security (IOTSMS). https://doi.org/10.1109/
IOTSMS48152.2019.8939164

[11] Simon Shillaker and Peter Pietzuch. 2020. Faasm: Lightweight isolation
for efficient stateful serverless computing. In 2020 USENIX Annual Tech-
nical Conference (USENIX ATC 20). https://www.usenix.org/conference/
atc20/presentation/shillaker

[12] Nanzi Yang,Wenbo Shen, Jinku Li, Yutian Yang, Kangjie Lu, Jietao Xiao,
Tianyu Zhou, Chenggang Qin, Wang Yu, Jianfeng Ma, and Kui Ren.
2021. Demons in the Shared Kernel: Abstract Resource Attacks Against
OS-Level Virtualization. In Proceedings of the 2021 ACM SIGSAC Con-
ference on Computer and Communications Security. Association for
Computing Machinery. https://doi.org/10.1145/3460120.3484744

3

https://sel4.systems/Info/Docs/seL4-manual-latest.pdf
https://sel4.systems/Info/Docs/seL4-manual-latest.pdf
https://www.usenix.org/conference/nsdi20/presentation/agache
https://www.usenix.org/conference/nsdi20/presentation/agache
https://doi.org/10.1145/3447786.3456248
https://doi.org/10.1145/3447786.3456248
https://dl.acm.org/doi/10.5555/3026877.3026882
https://sel4.systems/
https://man7.org/linux/man-pages/man7/cgroups.7.html
https://man7.org/linux/man-pages/man7/cgroups.7.html
https://man7.org/linux/man-pages/man2/clone.2.html
https://man7.org/linux/man-pages/man2/clone.2.html
https://man7.org/linux/man-pages/man7/namespaces.7.html
https://man7.org/linux/man-pages/man7/namespaces.7.html
https://doi.org/10.1109/IOTSMS48152.2019.8939164
https://doi.org/10.1109/IOTSMS48152.2019.8939164
https://www.usenix.org/conference/atc20/presentation/shillaker
https://www.usenix.org/conference/atc20/presentation/shillaker
https://doi.org/10.1145/3460120.3484744

	1 Motivation
	2 Overview of OSmosis
	3 Discussion and Use cases
	References

